Human Neural Prosthetics Program

Human Neural Prosthetics Program

The Human Neural Prosthetics Program is the result of a multidisciplinary effort to explore the utilization of brain computer interfaces for improving the lives of patients with motor disabilities. In 2007, a collaborative group was established—representing expertise in engineering, neuroscience and rehabilitation—to promote clinical trials using brain computer interfaces to control neural prosthetic devices.

Elizabeth Tyler-Kabara, MD, PhD, and Wei Wang, MD, PhD (Department of Physical Medicine & Rehabilitation) obtained an initial grant to evaluate micro-ECoG grids in patients in the Epilepsy Monitoring Unit. Data from this study demonstrated that patients could utilize a brain computer interface to control a computer cursor. This grant served as the kick-start for two clinical trials.

In the first, quadriplegic patients are implanted with a custom-designed ECoG grid for up to 30 days. The first subject was able to obtain consistent three-dimensional cursor control using a 3D visual environment. He was also able to successfully control a robotic arm. Additional subjects have also successfully achieved cursor control in a 3D virtual environment and control of a robotic arm. The initial work was funded by the Cortical Control of a Dextrous Prosthetic Hand study funded by National Institute of Neurological Disorders and Stroke (NINDS) and Andrew B. Schwartz, PhD (Department of Neurobiology) was the principle investigator.

A second study utilizes microelectrode arrays that penetrate the surface of the brain. This study is funded by the Defense Advanced Research Projects Agency (DARPA) and is part of the Revolutionizing Prosthetics Program, Phase 3 study for which Michael L. Boninger, MD, former chairman of the Department of Physical Medicine & Rehabilitation, is the principle investigator. In the study, two 96-channel electrode arrays were implanted into the brain of a quadriplegic individual. This study participant was able to obtain control of up to 10 degrees of freedom. Using seven degrees of freedom, she has been able to utilize the robotic arm to perform standardized rehabilitation tasks, such as placing objects on a shelf. Once FDA approval was obtained, she was able to interact personally with the robotic arm and was able to grasp a food item and feed herself. As part of the Revolutionizing Prosthetics Program, Phase 3 study, investigators also obtained FDA approval to place stimulating arrays in conjunction with recording arrays in anticipation of adding sensory feedback to the control of the robotic arm. A second subject was implanted with two recording arrays in motor cortex and two stimulating arrays in sensory cortex. This subject was able to experience a natural-like sense of touch when the fingers of the robotic arm were stimulated by touch. In sensory tests, he was able to correctly identify which finger was touched while blindfolded.

The success of these early studies has led to additional collaborations. The first collaboration is funded by a $7 million NIH grant (Michael Boninger, MD, Physical Medicine and Rehabilitation) to expand our research team to include the University of Chicago. We join Sliman Bensmaia, PhD, and Nicholas Hatsopoulos, PhD, to expand our research efforts with the goal of restoring hand function in patients with paralysis. The second new collaboration is funded by a $1.2 million NIH award (Jennifer Collinger, PhD, Physical Medicine and Rehabilitation) to better understand the underlying neural activity of reaching and grasping. We will be collaborating with University of Pittsburgh researchers, Aaron Batista, PhD and Patrick Loughlin, PhD from the Swanson School of Engineering, and Carnegie Mellon researchers Steven Chase, PhD, and Byron Yu, PhD, from the College of Engineering.

Looking to the future we welcome Marco Capogrosso, PhD, who will be joining the department in January of 2020. His research efforts in spinal cord injury and motor control will complement the expertise of our current collaborators. We continue to look for opportunities to apply our expertise in brain computer interfaces to help our patients. We are developing a research program for stroke rehabilitation. We will begin the IDE application in the near future as we pursue funding.

See also:

Andrew Schwartz Motor Lab at the University of Pittsburgh

Human Engineering Research Laboratories

Human Rehabilitation and Neural Engineering Laboratory

UPMC Brain-Computer Interface (BCI) Media Kit